A New Hybrid Forecasting Model Based on Dual Series Decomposition with Long-Term Short-Term Memory

نویسندگان

چکیده

In recent years, ozone (O3) has gradually become the primary pollutant plaguing urban air quality. Accurate and efficient prediction is of great significance to prevention control pollution. The quality monitoring network provides multisource concentration data for prediction, but based on still faces challenges each station’s series data. Aiming at problems low accuracy computational efficiency in traditional atmospheric using dual decomposition was proposed by variational mode (VMD), ensemble empirical (EEMD), long short-term memory (LSTM). First, historical Nanjing stations decomposed VMD, then EEMD algorithm applied residual VMD obtain several characteristic intrinsic function (IMF) components; IMF component trained LSTM result component, final can be obtained linear superposition. method achieved best results with R2 = 99%, MSE 5.38, MAE 4.54, MAPE 3.12. Because strong adaptive learning ability good function, it advantage long-term data, are more accurate. According superior baseline models terms statistical metrics. As a result, hybrid serve as reliable model forecasting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Series Forecasting Based on Augmented Long Short-Term Memory

In this paper, we use variational recurrent model to investigate the time series forecasting problem. Combining recurrent neural network (RNN) and variational inference (VI), this model has both deterministic hidden states and stochastic latent variables while previous RNN methods only consider deterministic states. Based on comprehensive experiments, we show that the proposed methods significa...

متن کامل

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

Forecasting Across Time Series Databases using Long Short-Term Memory Networks on Groups of Similar Series

With the advent of Big Data, nowadays in many applications databases containing large quantities of similar time series are available. Forecasting time series in these domains with traditional univariate forecasting procedures leaves great potentials for producing accurate forecasts untapped. Recurrent neural networks, and in particular Long Short Term Memory (LSTM) networks, have proven recent...

متن کامل

A New Short-term Power Load Forecasting Model Based on Chaotic Time Series and SVM

This paper presents a model for power load forecasting using support vector machine and chaotic time series. The new model can make more accurate prediction. In the past few years, along with power system privatization and deregulation, accurate forecast of electricity load has received increasing attention. According to the chaotic and non-linear characters of power load data, the model of sup...

متن کامل

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Intelligent Systems

سال: 2023

ISSN: ['1098-111X', '0884-8173']

DOI: https://doi.org/10.1155/2023/9407104